Synthesis and Properties of Monoarylgold(III) Complexes

By K. S. LIDDLE and C. PARKIN*

(Department of Chemical Sciences, The Hatfield Polytechnic, Hatfield, Hertfordshire)

Summary Monoarylgold(III) complexes have been prepared and characterised; their i.r. spectra show the strong trans influence of the aryl ligand.

Until the recent reports of the synthesis of some pentafluorophenylgold(III) compounds and of the salts [Et₄N]-[RAuCl₃] (R = Ph, p-MeC₆H₄) no stable aryls of gold(III) had been characterised. We now report the synthesis of a number of air stable dichloro(aryl)gold(III) complexes, along the series $L = PPh_3 > py > Cl^- > SPr_2^n$, the PPh_3 complex undergoing no weight loss below 300°. A series of displacement reactions, $MeC_6H_4AuCl_2L + L' \rightarrow MeC_6H_4$ $AuCl_2L' + L$ establishes the order of complexing power to be $PPh_3 > Cl^- > py > SPr_2^n$ which parallels a similar order of isomer shifts in the Mössbauer spectra4 of the complexes LAuCl₃.

From i.r. data (Table) the phosphine and dipropylsulphide complexes are assigned the cis configuration, whereas the

TABLE Melting points and i.r. spectra^a (609-220 m⁻¹) of some monoarylgold compounds^b

Compound		m.p.	ν(Au-aryl)¢	v(Au-Cl)	v(Au–Cl) trans aryl
[Bu ₄ N][PhAuCl ₃]	•••	100° 113—114° 126—127° 155 decomp.	471m 476m 475m 478s	365s 332w 328m 310s 357s 355sh	280vs 294vs 286s
$[\mathrm{Bu_4N}][p\text{-MeC}_6\mathrm{H_4AuCl_3}]\ \dots$	• •	118—119°	488s	360sh 350s 330m	276vs
cis-p-MeC ₆ H ₄ AuCl ₂ SPr ₂ ⁿ	• •	$94-95^{\circ}$	495 s	327s 324sh	292vs
cis-p-MeC ₆ H ₄ AuCl ₂ PPh ₃ Et ₂ O $trans$ -p-MeC ₆ H ₄ AuCl ₂ py		152—153° 164° decomp.	494s 495s	318s 362s 355sh	288vs

a Bands other than those assigned are omitted; b satisfactory analytical data were obtained in all cases; c corresponds to Whiffen's y mode.5

 $RAuCl_2L$ (R = Ph, p-MeC₆H₄, p-ClC₆H₄; L = SPr_2^n , PPh₃, PMe₃, py) obtained by addition of the ligand to the unstable product $(RAuCl_2)_2$ of the auration reaction $RH + Au_2Cl_6 \rightarrow$ (RAuCl₂)₂ + 2HCl using freshly prepared anhydrous gold-(III) chloride. Some of the pale yellow or colourless complexes we have characterised are shown in the Table. Those which are sufficiently soluble to allow molecular weight determinations are monomeric.

Thermal analysis studies of a series of p-tolyl complexes MeC₆H₄AuCl₂L shows their thermal stability to decrease absence of a band in the pyridine complexes corresponding to vAu-Cl trans to the aryl group support their formulation as the trans isomer. The spectra illustrate the strong trans influence of the aryl group, the order of trans influence in these gold(III) complexes being aryl > PR₃ > SPr₂ⁿ > Cl > py. X-ray crystallographic studies on some of these compounds are in progress.

We thank the Chemical Society Research Fund for a grant.

(Received, September 28th, 1971; Com. 1692.

R. S. Nyholm and P. Royo, Chem. Comm., 1969, 421; L. G. Vaughan and W. A. Sheppard, J. Organometallic Chem., 1970, 22, 739.
K. S. Liddle and C. Parkin, Proc. IVth Internat. Conference on Organometallic Chem., Bristol, 1969, E6.
M. S. Kharasch and M. S. Isbell, J. Amer. Chem. Soc., 1931, 53, 3053.

⁴ J. S. Charlton and D. I. Nichols, J. Chem. Soc. (A), 1970, 1484. ⁵ D. H. Whiffen, J. Chem. Soc., 1956, 1350.